40 research outputs found

    Extended Formulations for Packing and Partitioning Orbitopes

    Full text link
    We give compact extended formulations for the packing and partitioning orbitopes (with respect to the full symmetric group) described and analyzed in (Kaibel and Pfetsch, 2008). These polytopes are the convex hulls of all 0/1-matrices with lexicographically sorted columns and at most, resp. exactly, one 1-entry per row. They are important objects for symmetry reduction in certain integer programs. Using the extended formulations, we also derive a rather simple proof of the fact that basically shifted-column inequalities suffice in order to describe those orbitopes linearly.Comment: 16 page

    On largest volume simplices and sub-determinants

    Full text link
    We show that the problem of finding the simplex of largest volume in the convex hull of nn points in Qd\mathbb{Q}^d can be approximated with a factor of O(logd)d/2O(\log d)^{d/2} in polynomial time. This improves upon the previously best known approximation guarantee of d(d1)/2d^{(d-1)/2} by Khachiyan. On the other hand, we show that there exists a constant c>1c>1 such that this problem cannot be approximated with a factor of cdc^d, unless P=NPP=NP. % This improves over the 1.091.09 inapproximability that was previously known. Our hardness result holds even if n=O(d)n = O(d), in which case there exists a \bar c\,^{d}-approximation algorithm that relies on recent sampling techniques, where cˉ\bar c is again a constant. We show that similar results hold for the problem of finding the largest absolute value of a subdeterminant of a d×nd\times n matrix

    Extension complexity of stable set polytopes of bipartite graphs

    Full text link
    The extension complexity xc(P)\mathsf{xc}(P) of a polytope PP is the minimum number of facets of a polytope that affinely projects to PP. Let GG be a bipartite graph with nn vertices, mm edges, and no isolated vertices. Let STAB(G)\mathsf{STAB}(G) be the convex hull of the stable sets of GG. It is easy to see that nxc(STAB(G))n+mn \leqslant \mathsf{xc} (\mathsf{STAB}(G)) \leqslant n+m. We improve both of these bounds. For the upper bound, we show that xc(STAB(G))\mathsf{xc} (\mathsf{STAB}(G)) is O(n2logn)O(\frac{n^2}{\log n}), which is an improvement when GG has quadratically many edges. For the lower bound, we prove that xc(STAB(G))\mathsf{xc} (\mathsf{STAB}(G)) is Ω(nlogn)\Omega(n \log n) when GG is the incidence graph of a finite projective plane. We also provide examples of 33-regular bipartite graphs GG such that the edge vs stable set matrix of GG has a fooling set of size E(G)|E(G)|.Comment: 13 pages, 2 figure
    corecore